Multivalued Mappings, Fixed-Point Theorems and Disjunctive Databases
نویسندگان
چکیده
In this paper, we discuss the semantics of disjunctive programs and databases and show how multivalued mappings and their fixed points arise naturally within this context. A number of fixed-point theorems for multivalued mappings are considered, some of which are already known and some of which are new. The notion of a normal derivative of a disjunctive program is introduced. Normal derivatives are normal logic programs which are determined by the disjunctive program. Thus, the well-known single-step operator associated with a normal derivative is single-valued, and its fixed points can be found by well-established means. It is shown how fixed points of the multivalued mapping determined by a disjunctive program relate to the fixed points of the single-step operators coming from its normal derivatives. This procedure has potential for simplifying the construction of models of disjunctive databases, and this point is discussed. Most of the results for multivalued mappings rest on corresponding, known results concerning fixed points of single-valued mappings. Since the latter results are frequently referred to, they have been collected together for convenience in a survey which should be of independent interest as well as being preparatory for the later results. Finally, a number of problems and issues raised by this work are discussed.
منابع مشابه
Some Fixed Point Theorems for Weakly Compatible Multivalued Mappings Satisfying Some General Contractive Conditions of Integral Type
متن کامل
Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps
In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...
متن کاملSOME FIXED POINT THEOREMS FOR SINGLE AND MULTI VALUED MAPPINGS ON ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES
In the present paper, a partial order on a non- Archimedean fuzzymetric space under the Lukasiewicz t-norm is introduced and fixed point theoremsfor single and multivalued mappings are proved.
متن کاملCommon fixed points of a finite family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces
In this paper, we introduce a one-step iterative scheme for finding a common fixed point of a finite family of multivalued quasi-nonexpansive mappings in a real uniformly convex Banach space. We establish weak and strong convergence theorems of the propose iterative scheme under some appropriate conditions.
متن کاملGeodesic metric spaces and generalized nonexpansive multivalued mappings
In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...
متن کامل